Privacy Preserving CART Algorithm over Vertically Partitioned Data

نویسندگان

  • Raghvendra Kumar
  • Ashish Jaiswal
چکیده

Data mining classification algorithms are centralized algorithm and works on centralized database. In this information age, organizations uses distributed database. Since data mining of private data is one of the keys to success for an organization, it is a challenging task to implement data mining in distributed database. Collaboration of different organization brings mutual benefits to the party involved. So different organizations wants to collaborate and execute efficient data mining algorithm. This arises privacy issues. Organizations are unable to collaborate because the privacy of private data is not fully preserved. In this paper CART algorithm is implemented over vertically partitioned data. For efficient privacy preservation of private data, privacy preserving protocols such as scalar product, x (ln x) protocols are used.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Privacy Preserving ID3 over Horizontally, Vertically and Grid Partitioned Data

We consider privacy preserving decision tree induction via ID3 in the case where the training data is horizontally or vertically distributed. Furthermore, we consider the same problem in the case where the data is both horizontally and vertically distributed, a situation we refer to as grid partitioned data. We give an algorithm for privacy preserving ID3 over horizontally partitioned data invo...

متن کامل

Privacy Preserving Data Mining over Vertically Partitioned Data

Vaidya, Jaideep Shrikant. Ph.D., Purdue University, August, 2004. Privacy Preserving Data Mining over Vertically Partitioned Data. Major Professor: Chris Clifton. The goal of data mining is to extract or “mine” knowledge from large amounts of data. However, data is often collected by several different sites. Privacy, legal and commercial concerns restrict centralized access to this data. Theore...

متن کامل

Privacy Preserving Data mining with Reduced Communication overhead

In today's world privacy and security are more essential elements when data is shared. A fruitful direction for future data mining research will be the development of techniques that incorporate privacy concerns. Most of the methods use random permutation techniques to mask the data, for preserving the privacy of sensitive data. The approaches for privacy preserving data mining suffer from high...

متن کامل

Privacy Preserving Association Rule Mining in Vertically Partitioned Data

Data mining technology has emerged as a means for identifying patterns and trends from large quantities of data. This paper presents privacy preserving association rule mining across vertically partitioned data. We present an efficient algorithm to discover association rules with minimum levels of support and confidence, from heterogeneous data distributed across 2 parties, while preventing eit...

متن کامل

Privacy Preserving Two-Party Hierarchical Clustering Over Vertically Partitioned Dataset

Data mining has been a popular research area for more than a decade. There are several problems associated with data mining. Among them clustering is one of the most interesting problems. However, this problem becomes more challenging when dataset is distributed between different parties and they do not want to share their data. So, in this paper we propose a privacy preserving two party hierar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013